Some theoretical extensions are first made in this paper , with the following concepts , theorems and models presented - partial derivative and high - order partial derivative of waveform polynomial for describing the relation between input transitions and output transitions and redefining circuit sensitization ; the concept of waveform polynomial vector for describing a circuit with multiple inputs and outputs , especially for the unified description of circuit modules ; a sensitization theorem for sequential circuits for the purpose of exact timing ; theorems for transition numbers in circuits used to solve problems on noise , power consumption and etc ; waveform polynomial description for sequential circuits used to give a unified form for the function and timing behavior of a sequtial circuit ; and a data structure of generalized list for the representation and manipulation of waveform polynomial 波形多項(xiàng)式偏導(dǎo)和高階偏導(dǎo)的新概念,用來精確描述輸出跳變與輸入跳變之間的關(guān)系,并在本文中用來重新定義了電路的敏化和冒險(xiǎn);波形多項(xiàng)式向量的概念,用于形式化描述實(shí)際中的多輸入多輸出的電路,特別是用于統(tǒng)一描述電路模塊的功能及定時(shí)行為;時(shí)序電路的敏化定理,用于時(shí)序電路精確定時(shí)分析;波形多項(xiàng)式描述跳變及跳變數(shù)的定理,用于噪聲、功耗等問題的描述;時(shí)序電路的完整波形多項(xiàng)式描述,用于時(shí)序電路功能和定時(shí)行為的統(tǒng)一描述;波形多項(xiàng)式的多項(xiàng)式符號表示和運(yùn)算的模型以及數(shù)據(jù)結(jié)構(gòu),用來實(shí)現(xiàn)對波形多項(xiàng)式比較有效的描述和運(yùn)算。